Subcellular localization of marine bacterial alkaline phosphatases.

نویسندگان

  • Haiwei Luo
  • Ronald Benner
  • Richard A Long
  • Jianjun Hu
چکیده

Bacterial alkaline phosphatases (APases) are important enzymes in organophosphate utilization in the ocean. The subcellular localization of APases has significant ecological implications for marine biota but is largely unknown. The extensive metagenomic sequence databases from the Global Ocean Sampling Expedition provide an opportunity to address this question. A bioinformatics pipeline was developed to identify marine bacterial APases from the metagenomic databases, and a consensus classification algorithm was designed to predict their subcellular localizations. We identified 3,733 bacterial APase sequences (including PhoA, PhoD, and PhoX) and found that cytoplasmic (41%) and extracellular (30%) APases exceed their periplasmic (17%), outer membrane (12%), and inner membrane (0.9%) counterparts. The unexpectedly high abundance of cytoplasmic APases suggests that the transport and intracellular hydrolysis of small organophosphate molecules is an important mechanism for bacterial acquisition of phosphorus (P) in the surface ocean. On average, each marine bacterium possessed at least one suite of uptake of glycerol phosphate (ugp) genes (e.g., ugpA, ugpB, ugpC, ugpE) for dissolved organic phosphorus (DOP) transport, but only half of them had ugpQ, which hydrolyzes transported DOP, indicating that cytoplasmic APases play a role in hydrolyzing transported DOP. The most abundant heterotrophic marine bacteria, alpha- and gamma-Proteobacteria, might hydrolyze DOP outside the cytoplasmic membrane, but the former could also transport and hydrolyze DOP in the cytoplasm. The abundant extracellular APases could provide bioavailable P for organisms that cannot directly access organophosphates, and thereby increase marine biological productivity and diversity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapidly diverging evolution of an atypical alkaline phosphatase (PhoAaty) in marine phytoplankton: insights from dinoflagellate alkaline phosphatases

Alkaline phosphatase (AP) is a key enzyme that enables marine phytoplankton to scavenge phosphorus (P) from dissolved organic phosphorus (DOP) when inorganic phosphate is scarce in the ocean. Yet how the AP gene has evolved in phytoplankton, particularly dinoflagellates, is poorly understood. We sequenced full-length AP genes and corresponding complementary DNA (cDNA) from 15 strains (10 specie...

متن کامل

Predicted protein subcellular localization in dominant surface ocean bacterioplankton.

Bacteria consume dissolved organic matter (DOM) through hydrolysis, transport and intracellular metabolism, and these activities occur in distinct subcellular localizations. Bacterial protein subcellular localizations for several major marine bacterial groups were predicted using genomic, metagenomic and metatranscriptomic data sets following modification of MetaP software for use with partial ...

متن کامل

The Subcellular Distribution of Triphosphoinositide

1. Some properties of the triphosphoinositide phosphomonoesterase from the homogenates of guinea-pig brain were studied. The enzyme has an optimum pH range 6.7-7.3, is stimulated with KCl at a concentration of 0.1M, and under these conditions has K. 1.43 x 10-4M. 2. A factor from the 'pH5 supernatant' of guinea-pig brain stimulates the enzyme activity over and above the stimulation produced by ...

متن کامل

Evidence for an association between Wnt-independent -catenin intracellular localization and ovarian apoptotic events in normal and PCO-induced rat ovary

The association of secreted frizzled related protein type 4 (Sfrp4) as an antagonist of Wnt mole-cules in apoptotic events has been reported previously. Moreover, its increased expression has been reported in the ovary of women with polycystic ovary (PCO). We have demonstrated in-creased Sfrp4 in PCO-induced rat ovary related to an increased number of apoptotic follicles showing nuclear ?cateni...

متن کامل

New insights into bacterial acquisition of phosphorus in the surface ocean.

S ince 1958 when Alfred C. Redfield (1) recognized the similarity between the ratios of elements in living biomass and those dissolved in the surrounding seawater, we have understood that microorganisms largely control the concentrations, distribution, and molecular makeup of nutritional resources in the ocean. The primary elemental ingredients for life, carbon (C), nitrogen (N), and phosphorus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 50  شماره 

صفحات  -

تاریخ انتشار 2009